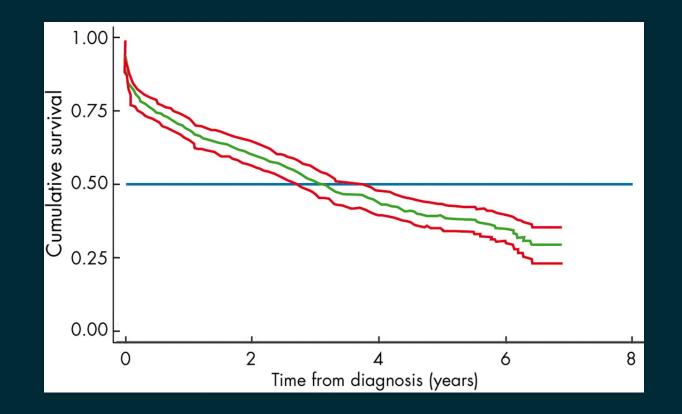
Heart Failure and Sudden Cardiac Death

Raja Selvaraj, JIPMER

What is sudden cardiac death?

Sudden Cardiac Death

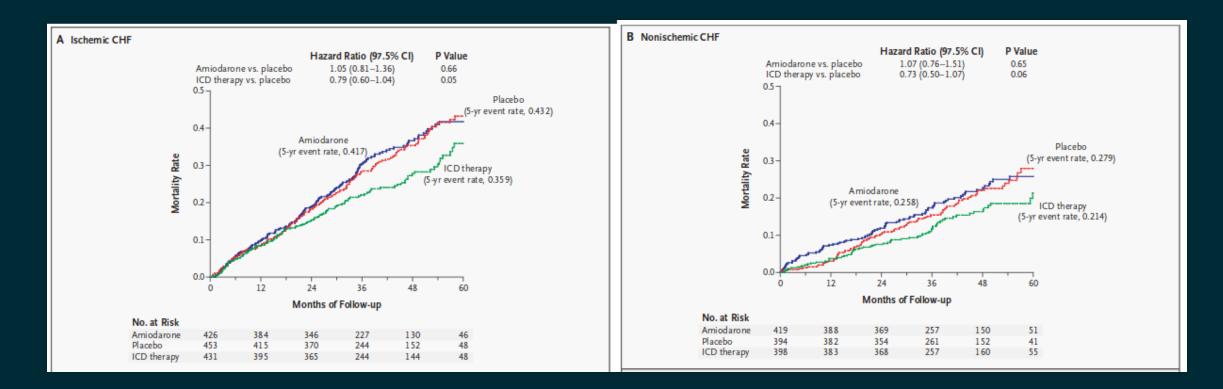

- Unexpected deaths from cardiovascular causes
- Preceded by a witnessed collapse
- Occur within 1 hour of an acute change in clinical condition
- Or < 24 hours after the person was known to be in usual state of health

SCD - Cause

- ICM
 - Ventricular fibrillation
 - Asystole / PEA (usually late after VF)
 - Recurrent MI (40 to 50%, early post MI)
 - Mechanical causes (very early post MI)
- NICM
 - Severe bradycardia / Asystole
 - Ventricular arrhythmias

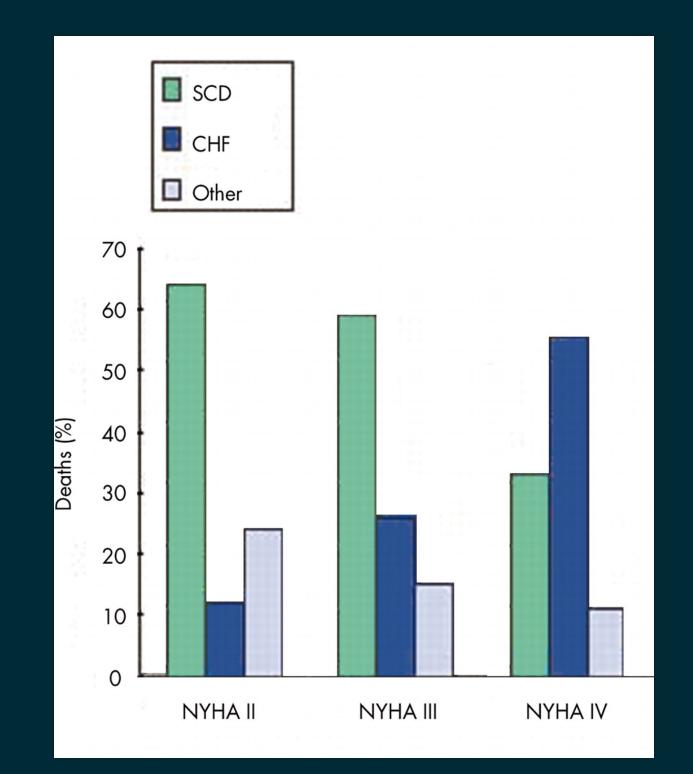
Why is it a problem in patients with heart failure?

Survival in patients with heart failure



Lane RE, Cowie MR, Chow AWC. Prediction and prevention of sudden cardiac death in heart failure. Heart 2005;91:674-680.

SCD in heart failure


- CHF increases risk of SCD by 6-9 times
- Primarly in HFrEF
- About 3% per year now (20% per year previously)

SCD HeFT

Bardy et a. Amiodarone or an Implantable Cardioverter–Defibrillator for Congestive Heart Failure. N Engl J Med 2005;352:225-37.

Mode of death and severity of symptoms

9.1

What can be done to identify and reduce risk

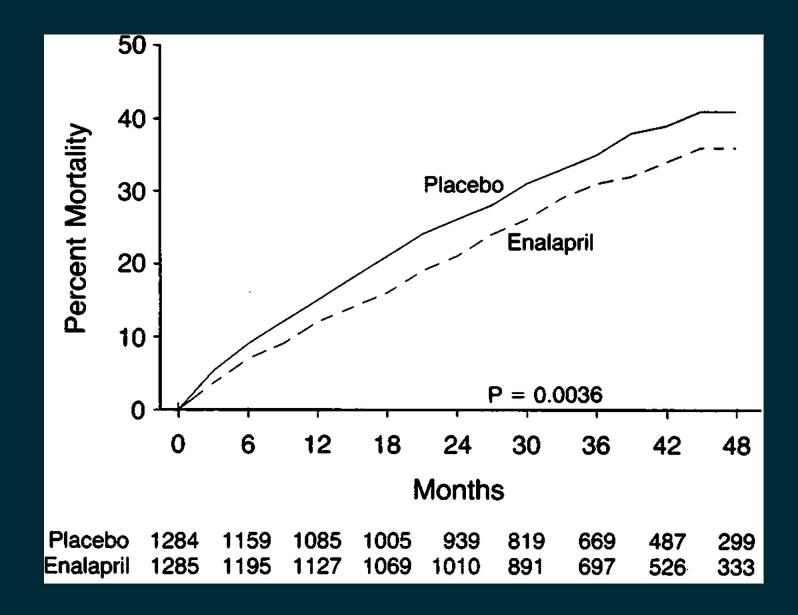
Identification of high risk patients

- LVEF is the one consistent marker
- Others varying results across studies
 - NSVT
 - TWA
 - HRV
 - HRT
 - EP study
 - MRI

Non-pharmacologic

- Exercise
- Revascularization

Drugs


Beta blockers

- Consistently improves survival in patients with heart failure
- Around 50% reduction in SCD
- Best studied Carvedilol, Bisoprolol and Metoprolol

	Events/total					
Study or subgroup	β blocker	Comparator		Odds ratio (Mantel–Haenszel, random) (95% CI)	Weight (%)	Odds ratio (Mantel–Haenszel, random) (95% CI)
ANZ 1997	20/207	26/208			2.8	0.75 (0.40 to 1.39)
BEST 2001	411/1354	449/1354		-	14.0	0.88 (0.75 to 1.03)
Bristow 1994	4/105	2/34			0.4	0.63 (0.11 to 3.62)
CARMEN 2004	14/191	14/190			1.9	0.99 (0.46 to 2.15)
Carvedilol Efficacy/Cohn	2/70	3/35			0.3	0.49 (0.07 to 3.60)
CHRISTMAS 2003	8/193/	6/194			1.0	1.35 (0.46 to 3.98)
CIBIS 1994	53/320	67/321		÷+	5.5	0.75 (0.50 to 1.12)
CIBIS II 1999	156/1327	228/1320		+	11.2	0.64 (0.51 to 0.79)
CIBIS III 2005	23/505	32/505			3.4	0.71 (0.41 to 1.22)
Colucci 1996	2/232	5/134			0.4	0.22 (0.04 to 1.17)
COMET 2003	512/1511	600/1518			14.7	0.78 (0.68 to 0.91)
COPERNICUS 2001	130/1156	190/1133		4	10.3	0.63 (0.49 to 0.80)
ENECA 2005	7/134	7/126			1.0	0.94 (0.32 to 2.75)
MERIT HF 2000/2002	145/1990	217/2001			11.2	0.65 (0.52 to 0.81)
MOCHA/Bristow 1996	12/261	13/84			1.6	0.26 (0.12 to 0.60)
Packer 1996	22/696	31/398			3.3	0.39 (0.22 to 0.68)
PRECISE 1996	6/133	11/145			1.1	0.58 (0.21 to 1.60)
RESOLVD 2000	8/214	17/212			1.5	0.45 (0.19 to 1.06)
SENIORS 2005	169/1067	1921061			10.9	0.85 (0.68 to 1.07)
Sturm et al 2000	5/51	8/49			0.8	0.56 (0.17 to 1.84)
Waagstein-MDC 1993	23/194	21/189		÷+	2.7	1.08 (0.57 to 2.20)
Total (95% CI)	1732/11 911	2138/11 211		÷	100	0.71 (0.64 to 0.80)
Test for heterogeneity: τ^2 =0.0	$02, \chi^2 = 29.84, df = 2$	0, P=0.07, l ² =33°	%			anana dabara na 19
Test for overall effect: z=5.96	5, P<0.001		0.01	0.1 1 10	100	
With prediction interval (0.58	3 to 0.84)		Favours β blocker		Favours comparator	

Chatterjee Saurav et al. Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis BMJ 2013; 346 :f55

ACEI - SOLVD trial

SOLVD investigators. Effect of Enalapril on Survival in Patients with Reduced Left Ventricular Ejection Fractions and Congestive Heart Failure. N Engl J Med 1991; 325:293-302

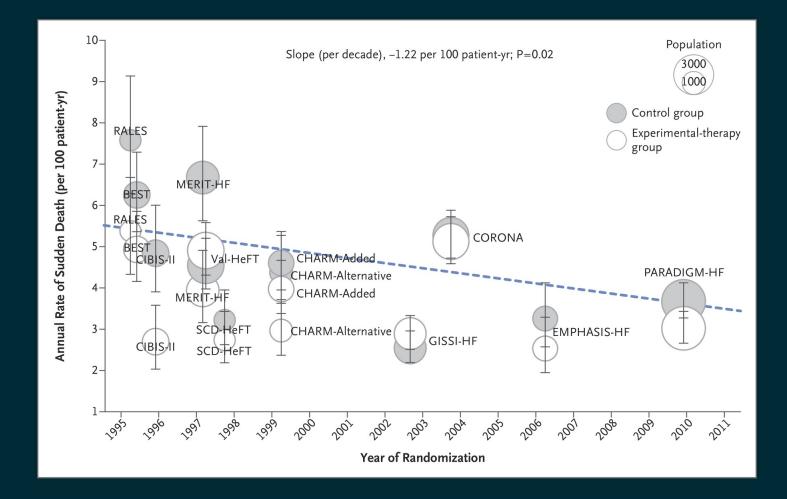
- Reduce total mortality
- Reduce arrhythmic mortality?

Naccarella F et al. Do ACE inhibitors or angiotensin II antagonists reduce total mortality and arrhythmic mortality? A critical review of controlled clinical trials. Curr Opin Cardiol. 2002 Jan;17(1):6-18

ARB as compared to ACEI

• No difference in mortality with ARB as compared to ACEI (1)

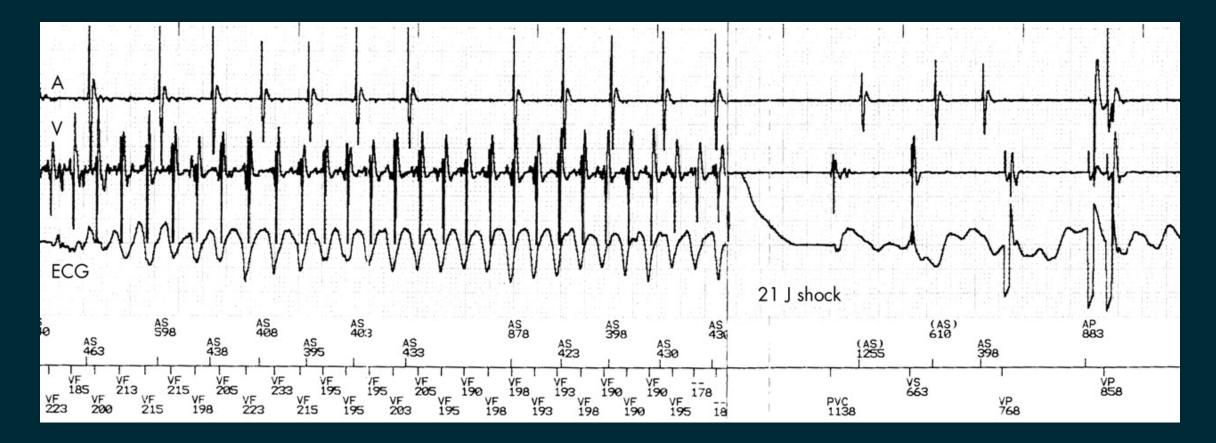
Pitt et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial-the Losartan Heart Failure Survival Study ELITE II. Lancet. 2000 May 6;355(9215):1582-7.

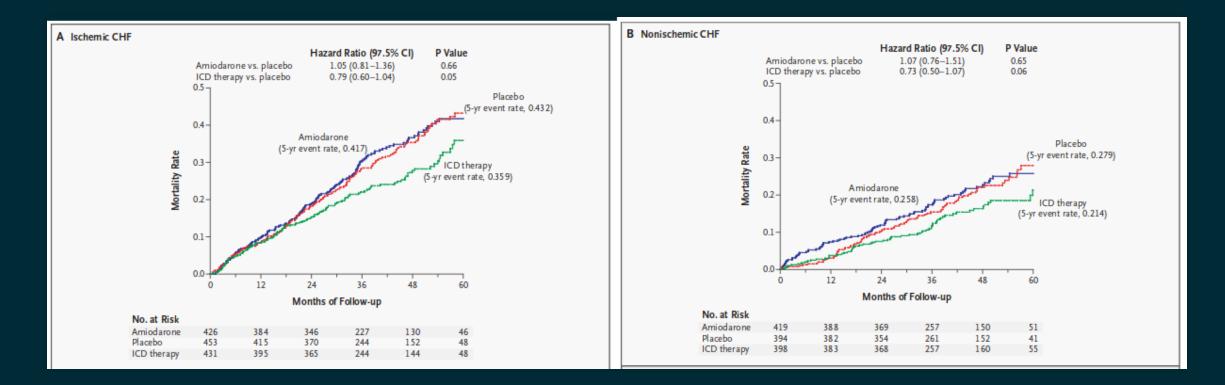

Aldosterone antagonist

- Spironolactone 30% reduction in mortality (1)
- Eplerenone 15% reduction in overall mortality and 21% reduction in SCD (2)
- Especially important in early mortality reduction after MI when ICD has no benefit
- 1. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med1999;341:709–17
- 2. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med2003;348:1309–21.

Statins

- Lower rate of arrhythmias MADIT II post hoc analysis (1)
- No SCD reduction in prospective trials (2,3)
- 1. Vyas AK et al. MADIT-II Research Group. Reduction in ventricular tachyarrhythmias with statins in the multicenter automatic defibrillator implantation trial (MADIT)-II. J Am Coll Cardiol 2006;47:769–73
- 2. Kjekshus et al, CORONA Group. Rosuvastatin in older patients with systolic heart failure. N Engl J Med 2007;357:2248–61
- 3. GISSI-HF Investigators. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 2008;372:1231–9


Optimal medical management - Huge impact


Li Shen et al. Declining Risk of Sudden Death in Heart Failure. N Engl J Med 2017; 377:41-51

Implantable devices

Implantable Cardioverter Defibrillator (ICD)

ICD - 20 to 30% reduction in deaths

Bardy et a. Amiodarone or an Implantable Cardioverter–Defibrillator for Congestive Heart Failure. N Engl J Med 2005;352:225-37.

CRT

Reduction of all cause mortality compared to optimal medical treatment (24%)

(COMPANION) - Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med2004;350:2140–50

Role of Sacubitril-Valsartan

PARADIGM-HF

- Neprlisyn inhibitor with ARB
- About 4200 patients in each group
- 27 months follow up
- Significant reduction in composite endpoint (death + hospitalization for heart failure
- NNT 32 to prevent one cardiovascular death

McMurray et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N Engl J Med 2014; 371:993-1004

Mode of death in PARADIGM-HF

- Cardiovascular deaths
 - Sudden 44.8%
 - Heart failure related 26.5%
- Less cardiovascular deaths with ARNI
- Benefit seen in both sudden and heart failure deaths
- Reduction in sudden death even in patients with ICD

Desai et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. European Heart Journal, Volume 36, Issue 30, 7 August 2015, Pages 1990–1997

ARNI and survival in CHF patients

Table 1. Characteristics of the Patients at Baseline.*						
Characteristic	LCZ696 (N=4187)	Enalapril (N=4212)				
Treatments at randomization — no. (%)						
Diuretic	3363 (80.3)	3375 (80.1)				
Digitalis	1223 (29.2)	1316 (31.2)				
Beta-blocker	3899 (93.1)	3912 (92.9)				
Mineralocorticoid antagonist	2271 (54.2)	2400 (57.0)				
Implantable cardioverter-defibrillator	623 (14.9)	620 (14.7)				
Cardiac resynchronization therapy	292 (7.0)	282 (6.7)				

Summary

- All patients with heart failure should receive
 - Beta blockers
 - ACEI
 - Aldosterone antagonists
- Patients at high risk of SCD should receive
 ICD
- Patients with wide QRS may require
 CRT

Should ARNI replace ACEI

- Existing evidence is compelling
- Guidelines suggests replacing ACEI (US) or using when patients still symptomatic (EUR)
- Single trial, no long term follow up
- When changing
 - High dose ACEI tolerated?
 - 36 hour washout
 - Cost benefit ratio